STRENGTH OF ORTHOTROPIC MATERIALS
SUBJECTED TO COMBINED STRESSES

Information Reviewed and Reaffirmed

May 1962

No. 1816

UNITED STATES DEPARTMENT OF AGRICULTURE
FOREST SERVICE

FOREST PRODUCTS LABORATORY
MADISON - WISCONSIN

In Cooperation with the University of Wisconsin



STRENGTH OF ORTHOTROPIC MATERIALS SUBJECTED TO COMBINED STRESSESL

By
CHARLES B. NORRIS, Engineer

Forest Products Laboratory,2 Forest Service
U.S. Department of Agriculture

Summary

A theory of the strength of orthotropic materials subjected to combined stresses,
based on the Henky—vonMises theory of energy due to change of shape, is
presented. When this theory is applied to macroscopically isotropic materials,
it yields the diagram currently used in design with metals. Equations relating
the strength of orthotropic materials subjected to a single stress at angles

to the natural axes of the material are deduced from the theory, These
equations are shown to agree with available test values.

Introduction

The most common orthotropic material (that is, a material which has different
mechanical properties in the directions of three mutually perpendicular axes——
called the natural axes) is wood. Plywood can be considered to be orthotropic
under certain conditions. Paper and paper laminates are also orthotropic.
Resin laminates made of sheets of woven glass fiber, as used in radomes of
aircraft, are also orthotropic, as are most of the core materials used in
sandwich panels in the construction of high—speed aircraft.

To obtain rational designs of structures made of these materials, it is necessary
to have knowledge concerning their strength when they are subjected to combined
stresses. Further, if they are subjected to a single stress at angles to their
natural axes, this stress is resolved into components associated with the natural
axes and acts as a set of combined stresses. This fact was pointed out by

J=This report is one of a series prepared and distributed by the Forest Products
Laboratory under U.S. Navy, Bureau of Aeronautics Order No. NBA—PO—NAer00854
and USAF—P0-«33-038)49-4696E. Results here reported were obtained during
1950.

gMaintained at Madison, Wis., in cooperation with the University of Wisconsin.
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C. F. Jenkins (Z)§ in 1920. He suggested that when an orthotropic material is
loaded by a single stress the stress is resolved into the stresses associated
with the natural. axes, and that the strength of the material is reached when
any one of these resolved stresses reaches its maximum value, as determined
by tests in which that component of the single stress is applied alone. This
method was overlooked by previous investigators (5,6) in the field.

In 1920, a number of investigators (2,4,10,21) became interested in the com-
pressive strength of wood at an angle to the direction of the grain. During
this same time, tests wore being carried out by the Material Section of the
Air Service under the direction of R. L. Hankinson (26). These tests led to
an empirical formula known as the Hankinson formula, which is now in general
use.

The Hankinson formula does mot contain the shear strength of the wood but merely
the compressive strengths parallel and perpendicular to the grain of the wood.
The compressive strength perpendicular to the grain is difficult to determine
because, as the load is increased, the wood will crush down and the load will
increase indefinitely, reaching a value of about 10,000 pounds per square inch
when the volume of the wood is reduced to about one-—half its original volume.

R. C. Rowse (20) avoided this difficulty by applying the Hankinson formula to
proportional limit stresses rather than to strengths. He found that the
Hankinson formula fitted his experimental data reasonably well.

In 1928, W. R. Osgood (19) analyzed much of the available experimental data

and pointed out that if a formula is fitted to this data it should contain a
means of adjusting the strength in the neighborhood of 45°. He suggested an
empirical formula that made such adjustment possible.

The author (13) roughly applied the Henky—vonMises theory (11,12) of constant
energy due to change of shape to wood, and pointed out that the Hankinson
fromula tacitly assumes a relation between the shear strength (associated with
the natural axes) and the two compressive strengths.

During the Second World War, this matter again became important in connection
with the use of plywood and other orthotropic materials in aircraft construction.
The author (15) suggested the use of an interaction formula, which again brought
in the influence of the shear strength associated with the natural axes of the
material. This empirical formula fitted the experimental data so well that it
seemed to point to some existing physical mechanism responsible for the

strength of orthotropic materials. Its form suggested the Henky—vonMises

theory.

In the present report, a theory for the strength of orthotropic materials,
based upon the Henky—vonMises theory for isotropic materials, is developed by
a method that is not rigorously correct. The orthotropic materials are
assumed to be made from an isotropic material by introducing regularly spaced
voids. The formula obtained is identical to the interaction formula except

Sunderlined numbers in parentheses refer to literature cited at the end of
this report.
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for an added term that has a low value in the range in which tests have been
made. The formula can be reduced to apply to isotropic materials having
heterogeneously distributed voids, and when so reduced it leads to the criterion
for failure of metals that is currently inuse. The results of tests on wood,
plywood, and fiberglass laminate are compared with values obtained by means

of the formula, and good agreement is found.

Mathematical Development

The General Henky—vonMises Theory

Consider an isotropic material subjected to a stress system. A unit cube

within the material oriented with respect to an arbitrarily chosen set of
orthogonal axes, 1, 2, and 3, is shown in figure 1. These axes are not principal
axes of stress and, therefore, the surfaces of the cube are subject to shear
stresses as well as direct stresses, as shown. The energy of deformation of
this cube is determined by replacing the strains by the stresses by use of
Hooke"s law for elastic deformation.

Be, =5, - v(s, + s3)

Ee

il

5 = 8y - v(s3 + Sl)

E€3 53 - V(sl + SE)

(@H)
Geyp = 89p
G€23 = 323
Ge3l = 331

E = modulus of elasticity

G = modullus of rigidity

S = stress. The subscripts denote directions. Single subscripts denote
direct stresses, and double subscripts denote shear stresses.

D
1l

strain. The subscripts denote directions as for stresses.

Poisson®"s ratio

<
1l
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Using these equations the total energy of deformation is:

1 2 2 2 .
W= = [sl + 8" + 8y - 2v(u.l.=2 + 8p8g + 3351)}

2 2 2
+ 'é]:é.' leg + 523 + 531 } (2)
The energy of change of volume is:

W :% (s + 55 + 83) (e + e + €3) :%ﬁ (1 -2v) (s1 + 8p + s3)2 (€))

The energy of the shear strains does not appear in this equation, because shear
strains do not change the volume. The energy of change of shape is Wg =W - Wy

or:
Wy =I%§ [(sl - 82)2 + (80 - 33)2 + (33 - 51)21| \

+ é'% [5122 + S232 + 5312] @

The Henky—vonMises theory assumes that the energy, Wg, has a definite value
when the proportional limit of the material is reachéd, no matter what
combination Of stresses is applied to the material. |If stress s; is applied

alone and given the proportional limit value, p, equation (4) yieTjs:

2

Wg = E@
By using this value, equation (4) becomes:
P2 =% [(Sl - 52)2 + (Sg = 53)2 + (83 = 81)2:|-
+ 3 [8122 + 5232 + 5312] (4a)

This equation can be applied at failure for some materials. The octahedral
shear stress—straincurve (11,12) of such a material is given in figure 2,
with the proportional limit occurring at point A and failure at point B.
Suppose the material is to be loaded just short—offailure and the stress then
released. The stress—straincurve during release of the stress is like BC.
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On reloading, CB becomes the stress—straincurve, which is a straight line to
failure. Thus the material, treated in this way, acts elastically to failure
during the second loading. The condition of the material when point B is
reached is the same whether the release of stress and the reloading to that
point take place or not. The energy involved, Wg, can be considered to be

that associated with the reloading. For the material in this condition, the
proportional limit stress is equal to the stress at failure, and thus equation
(4a) will apply at failure for such a material. Many materials act
substantially in this way (11,12,27,29).

The Formula for Orthotropic Materials

Now consider an orthotropic material made up of an isotropic material by
introducing voids in the shape of equal rectangular prisms. The walls of
isotropic material between these voids are parallel to the 1-2, 2—3, and 3-1
planes, so that the axes 1, 2, and 3 become the natural axes of the orthotropic
material.

Each set of walls is subjected to a two—dimensional stress system, since the
surfaces of the walls are free from stress. Thus three equations for energy
due to change of shape are obtained, one for each set of walls. These equations
are obtained from equation (4). Thus:

1 2 2 1 2
WS ga' Sl - 8152 + 52 + vé-é- 512
2 2 2
Wy = 6LG 1:82 = 8pS3 + B3 :| + QL.G S2g ®)
1 2 1
Wg = 6 [53 - S38) + 81 } + = 531

IT 1t be assumed, for the moment, that the walls between the voids do not
buckle when they are stressed, the values of the stresses, s, in the isotropic
walls will be proportional to the values of the gross stresses, f, applied to
the orthotropic material because of the geometry of the material. These
proportionalities are expressed by:

g =%y 8o = Typfyp
83 = T3t £ = Tnfan
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When a shear stress, say f12, is applied alone, the set of walls parallel to

the 1 and 2 plane are subjected to edgewise shear. The two sets of walls
perpendicular to these walls are also subjected to shear in the 1 and 2 plane
where they are joined to the first set of walls (fig. 3). Thus the reaction

of the orthotropic material to the shear stress is greater than that of the
first set of walls acting alone, Thisfact is taken into account inthe value

of the ratio rqp. Further, the second two sets of walls are subjected to some

bending. The effect of this bending is neglected.

Substituting the values given by equation (6) in equation (56):

1.2, 2 2,2 1 2, 2
WB = gc—} l"l fl - rlflr2f2 + s fE + —E-G- rle f12
12,2 2,21 1 2, 2

WS = -ga Lrg fr - r2f2r3f3 + T3 f3 J + Ta ros3 f23 «a
1| 2,2 2 2 1 2. 2
WS = ga I‘3 f3 - r3f3rlfl + I‘l fl + 56 1‘31 f31

Now assume that the energy Wg has just the value associated with failure of
the isotropic material. First let all the stresses but f; be zero; then

in which F1 denotes the stress at failure obtained from test under this
conditioﬁT_Solving this equation for rq

47 6 GW,,

I‘l=

1

Repeating th i s procedure for the other stresses, the following equations are
obtained:

Baw
r. =
2 F2
6GW
r3 = F3
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20GW

g

g o =
1 F12
2GW_
I‘EB = FEB
2GW_
T3l = Ty

When these values are substitueted in equation (7), the following equations
result:

5 2 2
P N S~ B -
2 2 5
Fi= FiFp Fp® Fip
P 2 2
£ r.f. T T
1=92-93+ 32+232 @)
Fy° FFy Fy  Fpo
2 2 2
T S D
2 5 5
F, FF, F Ty

Cellular orthotropic materials often exhibit strengths in compression of lesser
values than those exhibited in tension. This phenomenon is attributed to the
buckling of the walls between the voids when they are subjected to a compressive
stress. Figure 3 is a sketch of a single wall with some of the surrounding
material still attached. The wall is buckled by the stresses sq and sp». This

buckling takes place because the edges of the wall are shortened by these
stresses. The buckled surface is shown by the dotted lines CAB and DAE, which
fell on the dash—dot lines COB and DOE before buckling took place. The corners
of the wall, E, remain substantially flat even after buckling occurs.

The maximum load the wall will carry is attained when the material at the edges
of the wall fails. Failure will occur at the corners of the wall, for here the
material is subjected to the combined effect of stresses s, and s,. At the

centers of the edges, at C or E, the effect of one of the stresses is reduced
because of the buckling of the wall. Failure may take place in these regions
because of combined compression and bending, but the maximum load on the wall
as a whole will not be reached until the material at the corners fails. The
addition of edgewise shear stresses to the wall does not greatly alter this
situation.
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When the balls buckle, the values of the ratios, r, do not remain constant as
the mean stresses, f, are increased, however; for any particular orthotropic

material, there are definite values of these ratios associated with the maximum
loads the walls will carry, and thus associated with the maximum values of the
mean stresses, E. When the stress Sq is applied alone, it can be assumed (25)

that the load on the plate is carried by two uniformly loaded strips at the
edges of the plate, each Of width cq as shown in figure 3. The width of these

strips decreases as the stress is increased and. has a definite value at the
maximum load. The width of the strips is given by:

-

b
128y (1 - vg)

Cl=1['h

in which h is the thickness of the wall. In figure 4, the radical is plotted
against the ratio of the stress to the modulus of elasticity. It is evident
that at high stresses the width of the strips does not change rapidly with the
stress. It will be assumed. that cq remains substantially constant in this

range. When the stresses sq and sy are applied together, equation (4a) indicates

that at failure the magnifaae of one of them is in this range and will control
failure. The addition of a shear stress will not greatly alter this situation,
because shear stresses are effected only slightly by buckling.

It follows that equations (8) apply with reasonable accuracy to cellular
orthotropic materials, even when the walls buckle before the maximum load is
reached. It should be noted, however, that the value of F1, Fo, or F3 may

be different when the mean stress f1, 5, or f3is compreggiﬁg_rathéF_than

tensile, .. When a mean stress is téﬁéilgj-the tensile value of the associated
E should be used; and when it is compressive, the compressive value of the
associated FE should be used.

Each of equations (8) represents an ellipsoid with its center at the origin.
These ellipsoids occupy a six—dimensional space. Any condition of stress is
represented by a point in this space. |If the point lies within the volume
common to all three ellipsoids, the material will not fail. As the stresses
increase, the point representing them moves outward from the origin, and when
it reaches the surface of any one of these ellipsoids, the orthotropic material
will fail.

Plane stress.——1Itis difficult to visualize these three ellipsoids in six-
dimensional space. However, only three dimensions of this space are needed if
the stress system applied to the orthotropic material is limited to one of the
natural planes. If the plane 1—21is chosen, f3 = fp3 = f31 =0, and equations
(8) reduce to: - -
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1= - +
M 2 2
e ERF, F Fp
f22
! (€))
2
Fo
2
£
.JE =1
Fy

These equations define an ellipsoid and four planes in three—dimensional space.
Two octants of the figure are shown in figure 5. The three parameters

represented in this figure are Il, EZ, andjle.
F1 F2 F12

The boundaries of the ellipsoid in this figure are shown by the curves

f f
AEDFBJICA. The plane 2= 1 is shown by DGBD, and the plane._}= 1 is shown

F F
by AHDA. If the point Eepresenting the stresses is within thelsolid bounded
by the ellipsoid and the planes, the orthotropic material will not fail. As
the stresses are increased, the point representing them moves away from the
origin. When this point reaches the boundary of the solid, the orthotropic
material will fail.

It can readily be seen that the voids introduced in the isotropic material to
make the orthotropic material need not be rectangular prisms, but might be
ellipsoidal or any other shape without disturbing the validity of the theory.
Also, the voids need not be equal in size nor uniformly spaced or oriented so
long as, macroscopically, the material is orthotropic because of the manner
in which the values of strengths, E, are determined. For the same reason,
the solid material need not be isotropic but may be aeolotropic.

Comparison with the interaction equation.—-—The author has suggested the use
of an interaction equation to determine the strength of an orthotropic material
subjected to a two—dimensional stress system (15). This equation is:

1= + + (10)
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This equation is identical to equation (9) except for the term

5
Fi1¥p

It is represented in figure 5 by the sphere 1KBMACI. This sphere lies outside
the ellipsoid in the left—hand octant and within the ellipsoid in the right-
hand octant. It intersects the ellipsoid on the lines ICA and CB.

This equation has been checked by tensile, compressive, and shear tests in
which the stress was applied at angles to one of the natural axes of the
orthotropic material. These tests explored three lines on the ellipsoid, The
tensile tests explored the line BLA in figure 5. It is evident from the figure
that either of equations (9) or (10) should check the experiments very well,
particularly if the shear strength of the material tested is low. The com—
pressive tests explored a similar line in an octant not shown in figure 5.

The shear tests explored the line JC in the figure. On this line, it is
evident that equation (10) should yield greater values than equation (9).

These tests are discussed subsequently. The results obtained fit the ellipsoid
better than the sphere.

Strength at an Angle to a Natural Axis

Equation (9) is useful in the determination of the strength of an orthotropic
material stressed at an angle to the direction of one of the natural axes.
Consider two orthogonal axes, x and y, at an angle, g, to the natural axes,

1 and 2, as shown in figure 6. The stresses associated with these axes are
Ty fy, and fxy- Then the stresses associated with the natural axes are given
by the transformation equations (28):

T

It

2 , 2 .
1 fx cos @ + fy sin 8 + Efxy ginf cosl

2 2
f, = f, sin"@ + £, cos 8 - Eny sing cosd (11)

fip = (fy - £,) sind cosé + fxy(cosge - sinee)

Tensile strength.——I1fa tensile stress in the direction x exists alone, then
fy = fXy = 0 and equations (11) reduce to:

fl = fx 00529

fp = £, s5in°0 (12)

f sind cosh

12 - -fx
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Substituting these values in the first of equations (9) and replacing f, by
Fy to denote failure, the following equation results: T

L I
LI DR g ——— sin20 cos®o + B8 (13)

5 ) 3 z
P Fy F1p7 FFp Fy

This equation defines the curve BLA in figure 5. The exact position of this
curve depends upon the ratio of F; to F»; however, the curve passes through

points A and B for all values of this ratio. The curve shown is the one for
this ratio equal to unity.

Compressive strength.——Equations (13) can be used, also, for a compressive
stress at an angle to one of the orthotropic axes if the associated values of
F1 and F2 are employed.

Shear strength.——1fa shear stress associated with axes x and y exists alone,
then fx = fy = 0 and equations (11) reduce to

fl = fxy 2 gind cosg = T gin 26

Xy
fp = =fyy 2 5in0 cos0 = £, sin 20 (14)
£, =f__ (cos°6 - sin®@) = £__ cos 28
12 Xy Xy

Substituting these values in the first of equations (9) and replacing fXy by

FXX to denote failure, the following equation results:

2
i - L L.t L 1 4o 4 £OST26 (15)
F, 7 ¥2 P F, ToC F.,2
: 1 12 2 12

It should he remembered that one of the strengths Fq or Fo is a compressive

strength and should be given the proper value. This equation defines the curve
JC in figure 5. This curve moves according to the value of the ratio of Fq{ to

Fo. It always passes through point C, hut the position of point J dependg_hpon
this ratio. The curve show. is the one for this ratio equal to unity.

Compressive strength——specimenrestrained.——Ina structure or in a test in
which the orthotropic material is subjected to a single stress f,, the stresses

f,, and F,,, may not he zero because of the restraint Imposed by adjacent members

Y XY
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or by the testing machine. This may be true especially if fx is a compressive
stress. The actual value of Fx, of course, cannot usually be found because the
values of fx_and fXM are not known. However, the maximum possible value of Fy
can be found as follows.

Let

Then, equations (11) are written:

fl = fX [cosge + T sin29 + 28 sind cose]

fo = fy [singe + T cos8 - 25 £1n8d cos@} (16)
f1a =t [(r - 1) eln® cosd + B(COEEQ - sin?Q)]

12 x _

These values are substituted in the Tirst of equations (9) and fy Is maximized
with respect to r and s. This process leads to:

sz = % [Fl2 coshe + Fee sinhe + (FyFp + 3Fl22) s1n20 cosze] an

This value of Fy is limited by the second and third of equations (9). By using
the second equation in the quadrant shown in figure 5,

f, =F
the second of equations (16) becomes

Fo = Iy [sinee +r c0329 - 258 ging cos@]
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By using this equation with the others of equations (16) and again maximizing
Ty as before:

- it 2 b o o o
¢ o p F1coS 8 + Fosin 0 + (FyFp + 3F457) sin”6 cos™@ (18)
* ¥y 81n°9 + ¥y cosCg

The third of equations (9) applied to the quadrant shown in figure 5 is:
f1 =F1
Thus the first of equations (16) becomes

Fy =1,

[cosae +r singe + 28 ging cose}

and the value of Fy is:

P oo Flzcosue + Fazsinue + (FqFo + 3F122) sin6 cos"8 (19)
x 2F o5 + Fo sin®g

The proper value of Fy is the least value given by equations (17), (18), and

(19). These equations can be used for either a tensile or compressive stress
it the proper values of Fq and F» are used.

The results of tests seldom reach the large values given by formulas (17),
(18), and (19). A better approximation of the test conditions is obtained by
assuming ¥ = 0 and fXM restrained; thus the value of r in equations (16) is

assumed to be zero. This assumption results in:

(S JRET sl‘e+2[2 (Fy 24P FpFp® JFy o= F1 OF 7 ]sin?eco 52047, 27, 2einp

2
F, = (20)
Fégcoéﬁe + (3F122 + FlFe) singe 00529 + Flasinge
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Shear strength—-specimenrestrained.—-—-Anequation for the shear strength when
the panel is completely restrained can be obtained in a similar way. Equations
(16) become:

fl = f a cosge + b sin26 + 2 8lnB cogd

rna N I I |

fo = Ty | & sin°6 + b cos 8 - 2 sind cosd (21)

f =1 ﬁ(b - a) sind cosd + cos°9 - sin ]

12 Xy L
in which

. o X

Ty

and

b=

and the equation resulting from the maximization of fX with respect to a and

y

b is:

2 _ 2
F =0

2 1 (p.2 2 2
Xy cos26 + 3 (F1° - F1Fp + Fo°) sin“2¢ (22)

It should be remembered that one of the strengths, Fq or Fo, is a compressive
strength and should be given the proper value. T

Macroscopic lIsotropic Materials

The orthotropic materials discussed have been made by introducing voids into
and isotropic material. |If these voids are heterogeneously dispersed in an
isotropic material, the resulting material will be, macroscopically, isotropic.
The tensile strength of such a material will have the same value no matter

in what direction the stress is applied. It follows that F1 = F5, =F and that

the value of FX given by equation (13) is independent of g. This condition is
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obtained if the right-hand member of this equation is a perfect square. To
obtain this condition

1 -2
2T L2
Fi,~ F

or

Fip = 4= = 0.577 F
3

This relation can also be obtained directly from the Henky—von Mises theory.
It is reasonably accurate for most ductile materials.

For this material, the natural axes, of course, have no meaning and the axes
of reference can be chosen in any direction. |If the axes are chosen in the
directions of the principal axes of stress, the axis for shear stress is
eliminated. The ellipsoid in figure 5 becomes the ellipse 1JBFDEA, which is
the ellipse determined by the Henky-von Mises theory; however, there is the
great difference that this ellipse is now cut by the lines BD and AD. It is
noteworthy that the ellipse, cut in this manner, agrees very well with the

Comparison With Experimental Data

A considerable number of data concerned with the strength of orthotropic
materials stressed at angles to the natural axes has been obtained. A limited
number of these data will be used for comparison with the theory developed.
Those used are taken from Forest Products Laboratory Reports Nos. 1328 (15)
on plywood and 1803 (30) on fiberglass laminate and from Rowse"s thesis (20)
on Douglas—Ffir wood. The Ffirst two reports contain determinations of the
tensile, compressive, and shear strengths associated with the natural axes of
the materials, and these values were used where indicated in the formulas.
Rowse determined proportional limits rather than strengths, and the theory,
therefore, does not rigidly apply. He did not report the shear stress at
proportional limit, and it was estimated for the purpose of this comparison.

P1ywood

Tensile tests.—-The tensile specimens were 16 inches long, and of the thickness
of the laminate. The maximum sections at the ends were 1-1/2 inches wide and
2-7/8 inches long. The minimum section at the center was 0.8 inch wide and
2-1/2 inches long. The maximum and minimum sections were connected by circular
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arcs of 20—inch radius tangent to the minimum section. The method of test is
described in the reference. The data chosen for comparison are those for three

ply plywood made of 1/16-inch veneers. The strength values for .substitution
in the formulas are:

F1 =11,034 (table 10, Report No. 1328-B (17))

F = 6,300 (table 10, Report No. 1328-B)

F12 = 1,410 (table 18, Report No. 1328-C (18))

These values substituted in equation (13) yield the curve shown in figure 7.
The points shown in the Ffigure represent the average values given in table 10
of Report 1328—B (17). Equation (13) was used because a tensile specimen,
being long, is not restrained by the grips of the testing machine. Remarkable
agreement was obtained between the test values and the theory. Perfect agree—
ment could not be expected because of stress concentrations introduced by the
shape of the specimen (22).

Compression.——-The data chosen for comparison with the theory are those obtained
from tests on three—ply plywood. Compressive specimens have to be comparatively
short so that they will be elastically stable. They are, therefore, likely to
be restrained by the testing machine in two ways. The action of Poisson"s ratios
is restrained by friction with the heads of the machine, and shear strains are
restrained because the heads are guided. This second kind of restraint could
have been removed by employing rollers, as illustrated in figure 8, instead of
placing the specimen between the heads, as shown in figure 9. The strength
values substituted in the equations are:

F1 5,125 (table 2, Report No. 1328—A)

Fo 2,480 (table 2, Report No. 1328-A)

F12 = 1,410 (table 18, Report No. 1328-C)

These values were substituted in equations (13), (17), (18), (19), and (20),
and the curves plotted in figure 10 were obtained. Equation (13) yields values
of compressive strength that the theory predicts if the specimen is not re-—
strained in any way. Equations (17), (18), and (19) yield values consistent
with complete restraint, and equation (20) yields values consistent with shear
restraint alone. The plotted experimental values were taken from table 2 of
Report No. 1328—A (16) and follow the curve of equation (20) with reasonable
accuracy.
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Shear.—-The apparatus used in making the shear tests on three—plyplywood was
considered unsatisfactory. The results of these tests, however, agree quite
well with the theory. The values substituted in the formulas for positive
angles are:

F1 =11,034 (tension) (table 10, Report No. 1328-B)
Fo = 2,480 (compression) (table 2, Report No. 1328-A)
Fi1o = 1,410 (table 18, Report No. 1328-C)

and for negative angles:

F1 5,125 (compression) (table 2, Report No. 1328-A)

Fo 6,300 (tension) (table 10, Report No. 1328-B)

F12 = 1,410 (table 18, Report No. 1328-C)

These values were substituted in equations (15) and (22), and the curves plotted
in figure 11 were obtained. The plotted points represent the average values

fa three-ply plywood given in table 18, Report No. 1328-C (18).

Some shear tests were made on five—plyyellow—poplar plywood (1/16—inch
veneers) with a better apparatus. The values substituted in the formulas for
comparison with the tests are for positive angles:

Fq1 =10,241 (tension) (table 11, Report No. 1328-B)
Fo = 2,760 (compression) (table 3, Report No. 1328-A)
F12 = 1,460 (table 20, group 3, Report No. 1328-C)

and for negative angles:

F1 =4,230 (compression) (table 3, Report No. 1328—A)

Fo = 7,255 (tension) (table 11, Report No. 1328 —B)
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F12 =1,460 (table 20, group 3, Report No. 1328-C)

These values were substituted in equations (15) and (22), and the curves were
plotted as shown in figure 12. The experimental values plotted in this figure
are obtained from table 20 (group 3) of Report No. 1328C (18).

In both of these figures (11 and 12) the experimentally determined points lie
between the curves representing restraint—free and fully restrained tests.

Pure shear is difficult to obtain in a test. , Part of this difficulty is explained
by the great distances between some of the curves for unrestrained and completely
restrained test conditions.

Glass Fabric Laminate

Glass fabric laminate 143-114was chosen for comparison with the theory because
of its marked difference in directional properties. Most of the glass fibers
in the cloth from which this laminate was made ran in one direction, and the
cloth layers were oriented so that this direction was common to all the layers.
The values used in the formulas and for comparison with the theory are taken
from Forest Products Laboratory Report No, 1803—A (31), table 5.

Tension,——Thevalues for substitution in the equations are:

F1 = 87,320
Fp = 9,880
F1o = 11,230

These values were substituted in equation (13), and the curve was plotted in
figure 13, The experimental values plotted in this figure were obtained from
table 5, column 7, of Report 1803—A. Remarkable agreement is obtained with
the theory.

Compression.——Thevalues for substitution in the equations are:

F1 = 56,800

F» = 20,950

F1o = 11,230
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These values were substituted in equation (13), and the curve was plotted as
shown in figure 14. The experimental values plotted in this Tfigure are taken
from table 5, column 13, of Report 1803-A. The specimens were 1 inch wide
and 4 inches long arid were supported against elastic instability as shown in
figure 3 of Forest Products Laboratory Report No. 1803. Good agreement is
obtained between the experimental values and equation (13), as is shown in
figure 14. It can be assumed, therefore, that this type of specimen is not
greatly restrained by the testing machine.

Shear.—-Thevalues for substitution in the equation for positive angles are:
F1 = 87,320 (tension)
Fo» = 20,950 (compression)
F1o = 11,230

and for negative angles they are:

F1 = 56,800 (compression)
Fo» = 9,880 (tension)
F1o = 11,230

These values were substituted in equation (15), and the resulting curve was
plotted as shown in Ffigure 15. The experimental values plotted in this Ffigure
are taken from table 5, column 18, of Report No. 1803-A. All of the experimental
values, except one, lie below the curve. The lowest one is about 28 percent
below the theoretical value. It is possible that stress concentrations due to
the method of test are responsible for these low values, The test apparatus

is illustrated in figures 6, 7, and 8 of Report No. 1803. The shear loads are
applied to the faces of the laminate instead of to the edges. This results

in a complicated stress distribution at the edges of the part of the specimen

that is tested. This complicated stress situation may lead to concentrations
that decrease the load at failure.

Douglas-fir in Compression

The data used for comparative purposes is that of Rowse"s thesis (20). The
proportional limit of the Douglas-fir used by Rowse is not given in his thesis
and therefore 1is estimated. Forest Products Laboratory Report No. 1801 (14)
presents shear stress-strain curves for a few species of wood, including
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Douglas—fir. Examination of these curves indicates that the proportional limit
stress in shear of Douglas—fir is closely equal to one—half of the shear strength.
The shear strength of the Douglas—fir used by Rowse is estimated by means of
U.S. Department of Agriculture Technical Bulletin No. 479 (9) by using values
for Rocky Mountain—type Douglas—fir that are closest to those obtained by Rowse.
The following tabulation shows the known values and those estimated:

Values by Values
Bulletin estimated
Property No. 479 by Rowse
(P.s.i.)
Compression proportional
limit stress, parallel 4,660 4,120
Compression proportional limit
stress, perpendicular 820 773
Shear strength, parallel 1,070 1,008
Shear proportional limit
stress, parallel (estimated
to be 1/2 of shear strength) 535 504

The value of shear strength given for the Douglas—fir used by Rowse is estimated
by use of the ratios of the proportional limit stresses in compression given

by Technical Bulletin No. 479 to those given by Rowse. Thus the values to be
substituted in the equations are:

F1. = 4,120
Fo = 773
F1o = 504

These values were substituted in equations (13), (17), (18), (19), and (20),
and the resulting curves were plotted as shown in figure 16. The experimental
values plotted in this figure were taken from Rowse"s thesis.

The specimens tested by Rowse were notched, as a beam in a truss would be notched
to receive the end of a diagonal member, and, therefore, were considerably
restrained by the method of test. The test values lie between the curves for

shear restraint alone (equation 20) and full restraint (equations 17, 18, and
19), as might be expected.

The dashed curve in figure 16 is a plot of the Hankinson equation. It fits
the experimental data a little better than equation (20) due to the restraint
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imposed on the specimens, It might he pointed out that equation (13) reduces
to the Hankinson equation if

¥, F
2 1’2
FlE T3

For these particular data, this relationship yields a value of F12 = 1,030.

This value is, of course, too great because it includes the restraint placed
on the specimen due to the method of test.

Conclusions

The experimental values confirm the theory as closely as can be expected. All
of the tensile tests and the compressive tests on glass fabric laminate confirm
it with remarkable accuracy. The compressive tests on plywood confirm the
theory if it is assumed that the testing machine applied shear stresses to the
specimen, due to friction between the specimen and the heads of the machine.
The remaining tests agree with the theory as closely as can be expected. The
lack of agreement is probably due to inadequate methods of test. Further
confirmation should be obtained by tests imposing combined tensile stress in
two directions and shear.
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OCTAHEDRAL SHEAR STRESS

”
OCTAHEDRAL SHEAR STRAIN

Figure 2.—-I11lustrative stress—straincurve.
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MACHINE HEAD

e

MACHINE HEAD ;

Figure 8 (top).--1llustration of a method of removing
shear restraint in a compressive test.

MACHINE HEAD 3

g MACHINE HEAD

Figure 9 (bottom) .--l1llustration of shear restraint
in a compressive test.
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SUBJECT LISTS OF PUBLICATIONS ISSUED BY THE

FOREST PRODUCTS LABORATORY

The following are obtainable free on request from the Director, Forest Products
Laboratory, Madison 5, Wisconsin:

List of publications on List of publications on
Box and Crate Construction Fire Protection
and Packaging Data
List of publications on

List of publications on Logging, Milling, and
Chemistry of Wood and utilization of Timber
Derived Products Products

List of publications on List of publications on
Fungus Defects in Forest Pulp and Paper

Products and Decay in Trees
List of publications on

List of publications on Seasoning of Wood
Glue, Glued Products
and Veneer List of publications on
Structural Sandwich, Plastic
List of publications on Laminates, and Wood—Base
Growth, Structure, and Aircraft Components

Identification of Wood
List of publications on

List of publications on Wood Finishing
Mechanical Properties and
Structural Uses of Wood List of publications on
and Wood Products Wood Preservation

Partial list of publications Partial list of publications
for Architects, Builders, for Furniture Manufacturers,
Engineers, and Retail Woodworkers and Teachers of
Lumbermen Woodshop Practice

Note: Since Forest Products Laboratory publications are so varied in subject
no single list is issued. Instead a list is made up far each laboratory
division. Twice a year, December 31 and June 30, a list is made up
showing new reports for the previous six months. This is the only item
sent regularly to the Laboratory®s mailing list. Anyone who has asked
for and received the proper subject lists and who has had his name placed
on the mailing list can keep up to date on Forest Products Laboratory
publications. Each subject list carries descriptions of all other sub—
ject lists.
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